2.1 Definición de matriz, notación y orden.

La matriz anterior se denota también por (ai j ), i =1, ..., m, j =1, ..., n, o simplemente por (ai j ). Los términos horizontales son las filas de la matriz y los verticales son sus columnas. Una matriz con m filas y n columnas se denomina matrizm por n, o matriz m ð n. Las matrices se denotarán usualmente por letras mayúsculas, A, B, ..., y los elementos de las mismas por minúsculas, a, b, ... Ejemplo:

CLASES DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en: Matrices cuadradas Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n ð n es de orden n y se denomina matriz n cuadrada.
Ejemplo: Sean las matrices
Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. Matriz identidad Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La traza de A, escrito trA, es la suma de los elementos diagonales. La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como matriz identidad (o unidad). Para cualquier matriz A, A· I = I ·A = A. Matrices triangulares Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas bajo la diagonal principal son iguales a cero. Así pues, las matrices


son matrices triangulares superiores de órdenes 2, 3 y 4. Matrices diagonales Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22, ..., dnn ). Por ejemplo,



son matrices diagonales que pueden representarse, respectivamente, por diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1). Traspuesta de una matriz La traspuesta de una matriz A consiste en intercambiar las filas por las columnas y se denota por AT. Así, la traspuesta de

En otras palabras, si A = (ai j ) es una matriz m ð n, entonces AT = a ai/ij es la matriz n ð m. La trasposición de una matriz cumple las siguientes propiedades: 1. (A + B)T = AT + BT. 2. (AT)T = A. 3. (kA)T = kAT (si k es un escalar). 4. (AB)T = BTAT. Matrices simétricas Se dice que una matriz real es simétrica, si AT = A; y que es antisimétrica, si AT = -A. Ejemplo: Consideremos las siguientes matrices:

Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica. Para B los elementos simétricos son opuestos entre sí, de este modo B es antisimétrica. A simple vista, C no es cuadrada; en consecuencia, no es ni simétrica ni antisimétrica. Matrices ortogonales Se dice que una matriz real A es ortogonal, si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente cuadrada e invertible, con inversa A-1 = AT. Consideremos una matriz 3 ð 3 arbitraria:
Si A es ortogonal, entonces:
Matrices normales Una matriz es normal si conmuta con su traspuesta, esto es, si AAT = ATA. Obviamente, si A es simétrica, antisimétrica u ortogonal, es necesariamente normal. Ejemplo:





Comentarios

Entradas más populares de este blog

1.5 Teorema de De Moivre, potencias y extracción de raíces de un número complejo.

1.3. Potencias de “i”, módulo o valor absoluto de un número complejo